Chem. Ber. 102, 1534-1541 (1969)

Hans Bock und Hartmuth Alt

d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen, XVI¹⁾

Si ~ O-Wechselwirkungen in Siloxynaphthalinen

Aus dem Institut für Anorganische Chemie der Universität München (Eingegangen am 9. Oktober 1968)

Die Tetracyanäthylen-Komplexe von 1- und 2-Siloxy-naphthalinen weisen größere Charge Transfer-Anregungsenergien auf als die entsprechender Methoxy-Derivate. HMO-Modelle, die $(d_{Si} \leftarrow n_O)$ -Wechselwirkungen berücksichtigen, führen zu einer vorzüglichen Korrelation zwischen den berechneten Eigenwert-Koeffizienten der obersten besetzten Molekülorbitale und den gemessenen CT-Bandenmaxima. Halbstufen-Reduktionspotentiale stützen die Annahme von $(Si \leftarrow O)$ - π -Bindungsanteilen in den Siloxy-naphthalinen.

Silyl- und Alkyl-Substituenten bewirken in vergleichbaren Sauerstoff-Verbindungen ungewöhnlich große Eigenschaftsunterschiede 2 : So ist in Disiloxan $H_3Si-O-SiH_3$ der Bindungswinkel (< Si $-O-Si=144.1^\circ$) gegenüber dem in Dimethyläther (< C $-O-C=111.8^\circ$) stark aufgeweitet 3). Siloxane und Alkoxysilane sind schwächere Basen 4), Silanole stärkere Säuren 5 als ihre Kohlenstoff-Analoga. Diese Befunde werden — wie auch NMR-6.7), IR-2) und UV-Daten 8) — mit ($d_{Si} \leftarrow n_O$)-Wechselwirkungen zwischen unbesetzten Silicium-3d-Atomorbitalen und den freien Elektronenpaaren des benachbarten Sauerstoffs interpretiert. Eindeutigere Aussagen sind dann möglich, wenn sich die bei (Si \leftarrow O)- π -Bindungsanteilen zu fordernde Absenkung der obersten besetzten Molekülorbitale direkt messen läßt. Neben Vakuum-UV-Absorptionen 9) eignen sich hierzu die Charge Transfer-Anregungsenergien der Tetracyanäthylen-Komplexe von Siloxy- und Alkoxy-Aromaten 10).

Das zugrundeliegende Meßprinzip sei zunächst an einem qualitativen MO-Schema (Abbild. 1) erläutert: Der Substituent OR mit dem freien Elektronenpaar n_0 hebt

¹⁾ XV. Mitteil.: H. Bock, H. Alt und H. Seidl, J. Amer. chem. Soc. 91, 355 (1969).

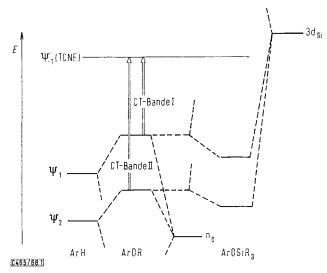
²⁾ F. G. A. Stone und G. Seyferth, J. inorg. nuclear Chem. 1, 112 (1955); H. Bürger, Fort-schr. chem. Forsch. 9, 1 (1967).

³⁾ A. Almenningen, O. Bastiansen, V. Ewing, K. Hedberg und M. Traetteberg, Acta chem. scand. 17, 2455 (1963); Daten des Dimethyläthers vgl. L. E. Sutton, Tables of Interatomic Distances, The Chemical Society 1965.

⁴⁾ R. West, L. S. Whatley und K. J. Lake, J. Amer. chem. Soc. 83, 761 (1961).

⁵⁾ R. West, R. H. Baney und D. L. Powell, J. Amer. chem. Soc. 82, 6269 (1960); R. West und R. H. Baney, J. inorg. nuclear Chem. 7, 297 (1958).

⁶⁾ G. Engelhardt, J. organomet. Chem. 8, P 27 (1967).


⁷⁾ H. A. Brune und D. Schulte, Chem. Ber. 100, 3438 (1967).

⁸⁾ J. Nagy und P. Hencsei, J. organomet. Chem. 9, 57 (1967).

⁹⁾ S. Bell und A. D. Walsh, Trans. Faraday Soc. 62, 3005 (1966).

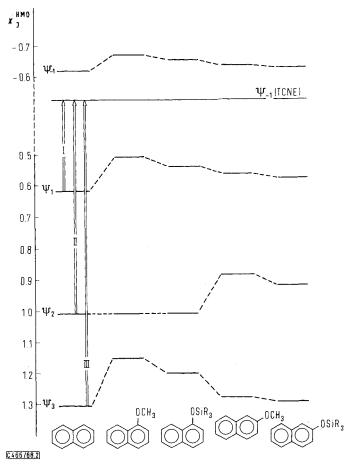
¹⁰⁾ H. Bock und H. Alt, J. organomet. Chem. 13, 103 (1968), sowie Chem. Commun. 1967, 1299.

diejenigen besetzten Molekülorbitale Ψ_J des aromatischen π -Elektronensystems ArH an, die über dem Energieniveau n_O liegen und keine Knotenebene am Substitutionszentrum aufweisen. Hierdurch werden die Charge Transfer(CT)-Banden I und II des Tetracyanäthylen/Aromaten-Komplexes TCNE/ArH, die den Elektronenübergängen aus den obersten besetzten Donator-Molekülorbitalen Ψ_J ($J=1,\ 2\ldots$) in das unterste unbesetzte Akzeptor-Molekülorbital Ψ_{-1}^{TCNE} zuzuordnen sind, langwellig verschoben. Ersetzt man den Alkylrest R am Sauerstoffatom durch eine R_3 Si-Gruppe, so senkt eine zusätzliche Wechselwirkung mit dem unbesetzten Silicium-Atomorbital $3d_{Si}$ die obersten besetzten Molekülorbitale des Siloxy-Aromaten ArOSiR $_3$ ab, und die CT-Banden I und II werden kurzwellig verschoben.

Abbild. 1. Qualitatives MO-Schema für Tetracyanäthylen(TCNE)-Komplexe von Siloxyund Alkoxy-Aromaten

Für die vorstehend erläuterten CT-Messungen sind Naphthalin-Derivate besonders gut geeignet, da sich wegen der fehlenden Entartung die relativen Energien der drei obersten besetzten Molekülorbitale erfassen lassen und durch 1- oder 2-Substitution die einzelnen Energieniveaus verschieden beeinflußt werden. Zusätzlich sollte die im Gegensatz zu Benzolderivaten bei Siloxy- und Alkoxy-naphthalinen mögliche polarographische Reduktion über $(d_{Si} \leftarrow n_O)$ -Wechselwirkungen im untersten unbesetzten Molekülorbital Aufschluß geben.

A. HMO-Schemata von Siloxy- und Alkoxy-naphthalinen


Eine Diskussion der CT-Bandenmaxima und der Halbstufen-Reduktionspotentiale von Siloxy- und Alkoxy-naphthalinen erfolgt vorteilhaft anhand der HMO-Energieniveau-Schemata der inneren Molekülorbitale, die sich bereits in vorangegangenen Untersuchungen 10,111 zur Interpretation von Meßergebnissen als gut geeignet erwie-

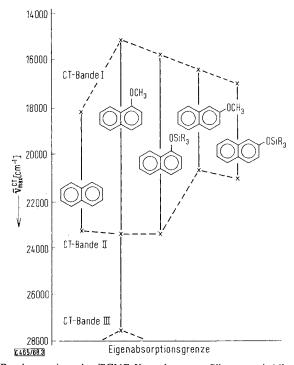
¹¹⁾ J. Kroner und H. Bock, Theoretica chim. Acta, 12, 214 (1968).

sen. Für die Naphthalin-Derivate wurde der folgende, an Benzol- und Biphenyl-äthern geeichte Parametersatz 10) verwendet:

$$h\ddot{o} = 1.6$$
 $k_{C-\ddot{o}} = 0.8$ (1) $k_{Si} = -1.5$ $k_{O-\ddot{S}i} = 0.9$

Mit den berechneten Eigenwert-Koeffizienten $x_J^{\rm HMO}$ der drei obersten besetzten Molekülorbitale Ψ_1, Ψ_2 und Ψ_3 (Tab. 1) sowie des untersten unbesetzten Molekülorbitals Ψ_{-1} ergeben sich die HMO-Eigenwert-Schemata (Abbild. 2), aus denen die Zuordnung der einzelnen CT-Übergänge zu entnehmen ist.

Abbild. 2. HMO-Eigenwert-Schemata der inneren Molekülorbitale von Siloxy- und Alkoxy-naphthalinen mit der Zuordnung der CT-Übergänge I, II und III ihrer TCNE-Komplexe

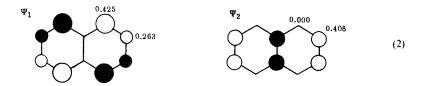

Eine Störung des Naphthalin- π -Systems durch eine Methoxy-Gruppe in 1-Stellung hebt bei Konstanz des Molekülorbitals Ψ_2 (vgl. (2): $c_{21}=0$) die Molekülorbitale Ψ_1 und Ψ_3 an, wodurch die CT-Banden I und III bathochrom verschoben werden. Bei

Austausch der Methylgegen eine Silyl-Gruppe tritt eine zusätzliche, stabilisierende $(d_{Si} \leftarrow n_O)$ -Wechselwirkung auf, welche die CT-Anregungsenergien 1 und III vergrößert, die CT-Anregungsenergie II dagegen unverändert läßt. 2-Alkoxy-Substitution erhöht auch die Energie des Molekülorbitals Ψ_2 und verschiebt daher alle in Abbild. 2 eingetragenen CT-Banden langwellig. Im 2-Siloxy-Derivat senkt die π -Akzeptorfunktion der leeren $3d_{Si}$ -Atomorbitale die obersten besetzten Molekülorbitale ab und sollte demnach zu einer hypsochromen Verschiebung aller CT-Banden Anlaß geben.

Auch die Energie des untersten unbesetzten Molekülorbitals Ψ_{-1} des Naphthalin- π -Systems wird durch Alkoxy-Gruppen stärker erhöht als durch Siloxy-Gruppen. Für die Siloxy-naphthaline sind daher positivere Halbstufen-Reduktionspotentiale zu erwarten als für die entsprechenden Alkoxy-Verbindungen.

B. CT-Bandenmaxima der TCNE-Komplexe

Die nach den HMO-Modellen zu erwartenden unterschiedlichen Effekte von $(CH_3)_3$ SiO- und CH_3 O-Substituenten auf die CT-Absorptionen des TCNE/Naphthalin-Komplexes sind bereits an den Farbunterschieden der Methylenchlorid-Lösungen zu erkennen: So ist die Lösung des 1-Methoxy-naphthalin-Komplexes grün, die des 1-Trimethylsiloxy-naphthalin-Komplexes dagegen blau. Die CT-Bandenmaxima der bei 20° aufgenommenen Elektronenspektren sind in Abbild. 3 verglichen, ihre Zahlenwerte $\tilde{v}_{\text{max}}^{\text{TM}}$ sowie die zugehörigen HMO-Eigenwert-Koeffizienten $x_{\text{J}}^{\text{HMO}}$ der Donator-Molekülorbitale sind in Tab. 1 angegeben.

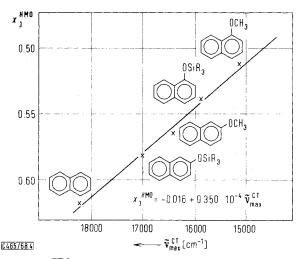

Abbild. 3. CT-Bandenmaxima der TCNE-Komplexe von Siloxy- und Alkoxy-naphthalinen

Tab. 1. CT-Bandenmaxima	ν̃CT max	[cm ⁻¹]	und	zugehörige	HMO-Eigenwert-Koeffizienten
$\chi_{\mathbf{J}}^{\mathbf{HM}}$	o von	Siloxy-	und .	Alkoxy-naph	thalinen

Verbindung	CT-Ban	CT-Bande I		CT-Bande II		CT-Bande III	
	$\tilde{\nu}_{max}^{CT}[cm^{-1}]$	x_{J}^{HMO}	$\tilde{\nu}_{max}^{CT}$ [cm ⁻¹]	$x_{\mathbf{J}}^{\mathrm{HMO}}$	$\tilde{\nu}_{max}^{CT}$ [cm ⁻¹]	$x_{\mathtt{J}}^{\mathrm{HMO}}$	
Naphthalin	18200	0.618	23300	1.000		1.303	
I-Methoxy- naphthalin	15150	0.512	23450	1.000	27550	1.149	
1-Trimethylsiloxy- naphthalin	15850	0.538	23400	1.000	≥28100	1.189	
2-Methoxy- naphthalin	16400	0.564	20700	0.872		1.268	
2-Trimethylsiloxy- naphthalin	17000	0.580	21050	0.903		1.279	

Ein Vergleich der Abbildungen 2 und 3 zeigt, daß das verwendete Einelektronen-Modell die unterschiedlichen CT-Anregungsenergien der TCNE-Komplexe von Methoxy- und Trimethylsiloxy-naphthalinen korrekt wiedergibt:

1. Die CT-Bande I liegt in 1-Methoxy-naphthalin längerwellig als in 2-Methoxy-naphthalin. Dies ist auch nach Störungsrechnungen $(\Delta x_{\rm J} \sim c^2_{\rm J}\mu)$ ausgehend vom Naphthalin-Molekülorbital Ψ_1 wegen $c_{11} > c_{12}$ zu erwarten.


Austausch der Methyl- gegen Trimethylsilylgruppen verschiebt sowohl bei 1- als auch bei 2-substituierten Naphthalinen die CT-Bande I kurzwellig, da der größere induktive Effekt $+I_{SiR_3}>+I_{CR_3}^{-12}$ durch die $(d_{Si}\leftarrow n_O)$ -Wechselwirkung überkompensiert wird.

- 2. Die CT-Bande II bleibt bei Substitution in 1-Stellung unverändert, da das Naphthalin-Molekülorbital Ψ_2 (2) eine Knotenebene durch das Substitutionszentrum ($c_{21}=0$) aufweist. Dieser Befund zeigt zudem, daß andere Einflüsse auf die CT-Anregungsenergien insbesondere unterschiedliche Gleichgewichtsabstände Donator/Akzeptor ausgeschlossen werden können. Substitution in 2-Stellung ($c_{22}=0.408$) verschiebt dagegen die CT-Bande II erwartungsgemäß langwellig, wobei infolge der (d_{SI} - n_O)-Wechselwirkung der Komplex des Trimethylsiloxy-Derivates wiederum kurzwelliger absorbiert.
- 3. Die CT-Bande III ist bei Naphthalin nicht meßbar, da sie in den Bereich der intensiveren Eigenabsorption des Aromaten fällt. Bei Anhebung des Molekülorbitals Ψ_3 durch eine 1-Methoxy-Gruppe erscheint sie dagegen außerhalb der in Abbild. 3

¹²⁾ H. Bock und H. Alt, Angew. Chem. 79, 934 (1967); Angew. Chem. internat. Edit. 6, 943 (1967).

eingetragenen Eigenabsorptions-Grenze (Tab. 1). Ein $(Si \leftarrow O)$ - π -Bindungsanteil sollte demgegenüber nach dem HMO-Eigenwertschema (Abbild. 2) die CT-Bande III hypsochrom verschieben. Übereinstimmend damit ist im Elektronenspektrum des TCNE-Komplexes von 1-Trimethylsiloxy-naphthalin nur noch der langwellige Anstieg der CT-Bande III erkennbar; das CT-Bandenmaximum kann aus der sichtbaren Bandenform zu $\tilde{v}_{\max}^{\text{CT-III}} \ge 28100 \, \text{cm}^{-1}$ abgeschätzt werden. Bei Substitution in 2-Stellung liegen die CT-Banden III — wie nach den größeren $x_{\mathtt{J}}^{\mathrm{HMO}}$ -Werten (Tab. 1) zu erwarten — völlig im Eigenabsorptions-Bereich.

Die Annahme einer starken (Si \leftarrow O)- π -Wechselwirkung, die den HMO-Berechnungen zugrundeliegt, wird durch die vorzügliche Korrelation der längstwelligen CT-Bandenmaxima I mit den berechneten HMO-Eigenwert-Koeffizienten x_1^{HMO} der obersten besetzten Molekülorbitale gestützt (Abbild. 4).

Abbild. 4. Korrelation $v_{\text{max}}^{\text{CT I}}/x_1^{\text{HMO}}$ für die CT-Banden I der TCNE-Komplexe von Siloxyund Alkoxy-naphthalinen

Die Steigung der Regressionsgeraden $x_i^{\rm HMO} = a + b$ $\tilde{\nu}_{\rm max}^{\rm CT~I}$ der Abbild. 4 stimmt mit der für Phenyl- und Biphenyl-Äther 10) berechneten (b = 0.379) gut überein, und bestätigt insbesondere den hohen Wert des in die HMO-Rechnungen eingesetzten Parameters $k_{\rm \ddot{O}-Si}$ (1) und damit des Resonanzintegrals $\beta_{\rm \ddot{O}-Si} = k_{\rm \ddot{O}-Si}$ $\beta_{\rm O}$.

C. Halbstufen-Reduktionspotentiale

Siloxy- und Alkoxy-naphthaline lassen sich wie Naphthalin und seine Alkylderivate ¹³⁾ polarographisch reduzieren. Die Halbstufen-Reduktionspotentiale, bei 22.5° in 0.2 molaren Lösungen von Tetrabutylammoniumjodid in Dimethylformamid gegen die Quecksilber-Referenzelektrode bestimmt, sind in Tab. 2 zusammen mit den Vergleichswerten für Methyl- und Trimethylsilylmethyl-naphthaline aufgeführt.

¹³⁾ A. Streitwieser und I. Schwager, J. physic. Chem. 66, 2316 (1962).

Tab. 2. Halbstufen-Reduktionspotentiale $E_{1/2}^{\text{Red}}$ [V] von Siloxy-, Alkoxy- und Alkylnaphthalinen

X	OCH ₃	OSi(CH ₃) ₃	CH ₃	CH ₂ Si(CH ₃) ₃
ÔÔ	2.01	-1.95	1.96	-2.02
	1.97	1.92	1.99	2.03

Die Differenzen in den Halbstufen-Reduktionspotentialen $E_{1/2}^{\text{Red}}$ der Siloxy- und Alkoxy-naphthaline sind nur gering. Die HMO-Rechnungen (Abbild. 2) liefern für die untersten unbesetzten Molekülorbitale Ψ_{-1} dieser Verbindungen ebenfalls die geringen Unterschiede von 0.015 und 0.005 β-Einheiten, die damit nur 1/2 bis 1/3 der Differenzen in den obersten besetzten Molekülorbitalen Ψ_1 betragen. Allgemein sollten die Siloxy-Derivate jeweils leichter reduzierbar sein, wenn die (dsieno)-Wechselwirkung den induktiven $+I_{SiR}$,-Effekt übertrifft. Der $+I_{SiR}$,-Effekt auf das Naphthalin-π-System kann einem Vergleich der Halbstufen-Reduktionspotentiale von Methyl- und Trimethylsilylmethyl-naphthalinen (Tab. 2) entnommen werden, da die CH₂-Gruppe eine π-Akzeptorwirkung des Siliciums auf das Naphthalin- π -System verhindert: Die R₃SiCH₂-Derivate sind daher schwerer reduzierbar als die entsprechenden Methylverbindungen. Ein entgegengesetzter Substituenteneffekt der R₃Si-Gruppe wird bei den Naphthyläthern beobachtet: Die Halbstufen-Reduktionspotentiale der Siloxy-Derivate sind positiver als die der entsprechenden Methoxy-Verbindungen. Damit bestätigen auch die polarographischen Meßergebnisse eine $(Si \leftarrow O)$ - π -Wechselwirkung in Siloxy-naphthalinen.

Der Deutschen Forschungsgemeinschaft danken wir für die großzügige Förderung unserer Untersuchungen.

Beschreibung der Versuche

Die Trimethylsiloxy-naphthaline werden durch Umsetzung von α - oder β -Naphthol mit einem Überschuß von Trimethylchlorsilan/Pyridin in siedendem Toluol dargestellt¹⁴), die Methoxynaphthaline nach Literaturvorschriften¹⁵). Trimethylsilylmethyl-naphthaline lassen sich vorteilhaft durch "in situ Grignard-Reaktion"¹⁶) der entsprechenden Brommethyl-Verbindungen in 80-90% Ausbeute gewinnen:

Die analytischen Daten enthält Tab. 3.

¹⁴⁾ S. H. Langer, S. Connell und I. Wender, J. org. Chemistry 23, 50 (1958).

¹⁵⁾ L. Gattermann, Liebigs Ann. Chem. 244, 72 (1888).

¹⁶⁾ R. L. Merker und M. J. Scott, J. Amer. chem. Soc. 85, 2243 (1963).

Tab. 3. Analytische Daten der Trimethylsiloxy-, Methoxy- und Trimethylsilylmethylnaphthaline

-naphthalin	Sdp./Torr (Schmp.)	Summenformel (MolGew.)	Analyse C H
1-Trimethylsiloxy-	90°/3·10 ⁻³	C ₁₃ H ₁₆ OSi (216.4)	Ber. 72.17 7.45 Gef. 72.41 7.35
1-Trimethylsilylmethyl-	143°/11	C ₁₄ H ₁₈ Si (214.4)	Ber. 78.45 8.46 Gef. 78.21 8.68
1-Methoxy-	135°/12	$C_{11}H_{10}O$ (158.2)	Ber. 83.51 6.37 Gef. 83.57 6.43
2-Trimethylsiloxy-	85°/0.45	C ₁₃ H ₁₆ OSi (216.4)	Ber. 72.17 7.45 Gef. 72.46 7.52
2-Trimethylsilylmethyl-	(61°)	C ₁₄ H ₁₈ Si (214.4)	Ber. 78.45 8.46 Gef. 78.54 8.46
2-Methoxy-	(72°)	$C_{11}H_{10}O$ (158.2)	Ber. 83.51 6.37 Gef. 83.50 6.29

Die CT-Spektren wurden in Merck Uvasol Methylenchlorid mit einem Cary N 14 Spektralphotometer aufgenommen. Tetracyanäthylen wurde durch Sublimation i. Hochvak. gereinigt. Die Halbstufen-Reduktionspotentiale wurden mit einem Metrohm Polarecord E 261 R in spektralreinem Dimethylformamid (Fisher) bestimmt. Für die HMO-Rechnungen stand ein Telefunken-Rechner TR 4 des Leibniz-Rechenzentrums, München, zur Verfügung.

[465/68]